Velocity Measurement

Method: Electromagnetic (Faraday’s Law)
Range: 0 to +6 m/s
Accuracy: ± 1% of measured value or ±0.03 m/s (whichever value is bigger)

Min. conductivity of the medium needed: 10µS/cm

Velocity Measurement Method

The principle of magnetic-inductive flow measurements utilizes the Faraday’s law, where a conductor moving in a magnetic field induces a voltage of amplitude proportional to the velocity of the conductor. The conductor is the media being measured.

Material & Dimensions

Material: Ultra High Molecular Polyethylene (PE-UHM)
Stainless steel 316 electrodes
Protection rate: IP68

Dimensions:
Size A: 165 mm L, 40 mm W, 25 mm H
Size B: 190 mm L, 60 mm W, 45 mm H

Weight:
Size A: 0.300 Kg (without cable)
Size B: 0.750 Kg (without cable)

Operating Temperature Range and Pressure

0º to 80ºC (depending on pressure)
Max. pressure: 4 bar (depending on temperature)

Certification

For ATEX Zone 1: II2G EEx ib m IIC T6 following ATEX 100a

Sensor Cable

Material: Polyurethane jacketed
Length: 10 m (standard)
20 m, 30 m or length up to 50 m (optional)

Converter for EMV-500™ (included)

Operating temp.: -10º to +50ºC
Protection rate: IP66
Power supply: 18…36 VDC
Output: One 4…20 mA analog output for velocity (m/s) to be connected to a PLC or the UNI-TRANS™ for flow conversion
Max. impedance: 500 Ohm

Specifications are subject to change without notice
Updated: 11/04/2013